ASSP

CMOS

3 V Single Power Supply Audio Interface Unit (AIU)

MB86437

■ DESCRIPTION

The FUJITSU MB86437 is an AIU (audio interface unit) LSI for +3 V single-power source digital telephone devices, manufactured using CMOS process technology. The codec transmission filter characteristics meet G. 712 standards, and can handle input and output in A-Law, μ-Law and linear conversion modes. The MB86437 also contains the necessary DTMF, microphone and receiver amps for telephone devices.

■ FEATURES

- +3 V single power supply
- Low power consumption: muting settings for each operating mode

Normal operation : 5.0 mA Typ
Standby mode $\quad 0.5 \mu \mathrm{~A}$ TYP

- On-chip codec filter meets G. 712 standards
- Selection of codec companding law (A-law, μ-law, 14 bit linear)
- On-chip low-noise microphone amp (2-channel) (0 to 35 dB amplification)
- On-chip receiver speaker amps (32Ω BTL type: 10 mW mis)
- On-chip earphone speaker amps (32Ω single type: 5 mW міл)
(Continued)
PACKAGE
48 pin, Plastic LQFP
(FPT-48P-M05)
(Continued)
- On-chip electronic volume gain adjustments (sending, receiving, tone)
- On-chip accessory input/output circuits
- DTMF generator function
- Service tone generation
- CMOS compatible input/output

■ PIN ASSIGNMENT

(FPT-48P-M05)

PIN DESCRIPTION

Pin No.	Symbol	I/O	A/D	Description
1	SWI	I/O	A/D	I/O pin for analog switch SW12 The standard on resistance for the analog switch is 500Ω.
2	SWO	I/O	A/D	I/O pin for analog switch SW12 Connected to pin 1 via switch SW12.
3	RAUD	O	A	Output pin for the received audio signal to the external speaker or for testing.
4	VD1	P	A	Power supply pin for reception. Supply a voltage between 2.7 V and 3.6 V.
5	JEAR	O	A	Amplifier output pin for the earphone speaker. Can output 5 mW for a 32Ω load.
6	EAR	O	A	Amplifier output pin for the receiver speaker. Internal BTL connection to XEAR. The maximum output for a 32Ω load between EAR and XEAR is 10 mW .
7	XEAR	O	A	Amplifier output pin for the receiver speaker. BTL connection to XEAR.
8	VS1	G	A	Ground pin for reception. Set to 0 V .
9	TONE	O	A	Amplifier output pin for the tone speaker. The output can be set to normal mode, ground, or high impedance.
10	TBO	O	A	AMP4 output pin. Pair high pass filter with TBI so that there is no DC offset at the speaker.
11	TBI	1	A	AMP4 inverted (-) input pin
12	PTBO	O	A	PCM reception, tone addition output
13	MDI	1	A	Pin used to add an analog input signal to the tone section or apply an envelope to the tone. Required functions can be selected by controlling SW16. Setting SW16 off sets the input impedance to approximately $140 \mathrm{k} \Omega$ and setting SW16 on sets the input impedance to approximately $210 \mathrm{k} \Omega$.
14	VD2	P	A	Power supply pin for reception. Supply a voltage between 2.7 V and 3.6 V.
15	DSCK	I/O	A	Can be connected to EXSD and TAUD by path switching.
16	EXSD	I/O	A	Can be connected to DSCK and TAUD by path switching.
17	TAUD	I/O	A	Can be connected to EXSD and DSCK by path switching.
18	MICO	O	A	Output pin for mike amplifier [1]
19	MIC	1	A	Inverted input pin (-) for mike amplifier [1]
20	XMIC	1	A	Non-inverted input pin (+) for mike amplifier [1]
21	JMIC	1	A	Inverted input pin (-) for mike amplifier [2]
22	JMICO	O	A	Output pin for mike amplifier [2]
23	VS2	G	A	Ground pin for transmission. Set to 0 V .
24	SGC	O	A	Pin for connecting the bypass capacitor for the signal ground potential generation circuit. Connect a capacitor between SGC and VS2.
25	VS4	G	A	Ground pin for A/D and D/A. Set to 0 V .
26	SGI	1	A	General-purpose amplifier. To use, connect to SGO.

(Continued)

Pin No.	Symbol	1/0	A/D	Description
27	SGO	O	A	General-purpose amplifier output pin. The signal can also go to JEAR via SW15.
28	STA	0	A	Transmission analog signal output via SW1. Connect to AMP4 when performing sidetone addition for reception. The standard on resistance for the analog switch is 500Ω.
29	BBO	0	A	Transmission analog signal output pin
30	BTPI	1	A	Inverted input pin (-) for the PCM ENCODE section input op-amp
31	BTPO	0	A	Output pin for the PCM ENCODE section input op-amp
32	VD3	P	D	Power supply pin for transmission. Supply a voltage between 2.7 V and 3.6 V .
33	DIN	I	D	PCM signal input pin. The signal is clocked in on the falling edge of CLK. CMOS interface.
34	DOUT	0	D	PCM signal output pin. The signal is clocked out on the rising edge of CLK. After data output, becomes fixed at the " H " level if PLL synchronization is lost or a power-down occurs. CMOS interface.
35	SYNC	I	D	Transmission and reception sync signal input pin for the PCM CODEC section. The operating clock frequency is 8 kHz . CMOS interface. Fixing at " H " or "L" causes part of the CODEC section to power-down.
36	CLK	1	D	Input pin for setting the bit rate for the transmission and reception PCM signals. The data rate can be selected from 64 kHz to 3.152 MHz for μ-law or A-law operation, or from 128 kHz to 3.152 MHz for linear operation. Fixing at "H" or "L" causes part of the CODEC section to power-down. CMOS interface.
37	TCLK	I	D	Clock input pin for tone generation. The internal clock divided by one or two (set by $\mathrm{D}_{4} \mathrm{D}_{3}$ of address 01110) can be used as the tone CLK. CMOS interface.
38	VD4	P	D	Digital power supply pin. Supply a voltage between 2.7 V and 3.6 V.
39	SRD	I	D	10-bit serial data input pin. CMOS interface. This data sets the electronic volume, path, and tone settings.
40	SRC	I	D	Write clock input pin for the 10-bit serial data. CMOS interface. SRD is clocked in the rising edge.
41	STB	I	D	Strobe signal for the serial data latch. Latches on "L". CMOS interface.
42	XPRST	1	D	Reset signal input pin for the digital circuits. CMOS interface. L: Initialize internal latches. H: Normal
43	LOO	0	D	Latch output pin for external control. Outputs D_{0} of address 01000. CMOS interface.
44	LO1	O	D	Latch output pin for external control. Outputs D_{1} of address 01000. CMOS interface.
45	LO2	0	D	Latch output pin for external control. Outputs D_{2} of address 01000. CMOS interface.
46	LO3	O	D	Latch output pin for external control. Outputs D_{3} of address 01000. CMOS interface.
47	PS	1	D	Power-down control signal input pin. CMOS interface. Powers down all circuits regardless of register settings.
48	VS3	G	D	Digital ground pin. Set to 0 V .

BLOCK DIAGRAM

MB86437

FUNCTIONAL DESCRIPTION

1. Register Settings

The MB86437 IC chip controls all electronic volume, switch, tone generator circuit and power-down control circuit by means of the SRD, STB and SRC input.

(1) Mode setting

The data format consists of 10 bits of serial data. The first 5 bits (A_{4} to A_{0}) are the address and the next 5 bits (D_{4} to D_{0}) are data. SRD is clocked in on the rising edge of SRC and latched when STB is "L". During power-down, the register is not reset and writing to the register is possible. A reset and data initialization occurs when XPRST is "L".

Data	Address	Meaning	Data Setting After a Reset					Data Meaning				
			D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	D4	D_{3}	D_{2}	D 1	D
A00	00000	Test mode	0	0	0	0	0	00000: Normal operation (writing prohibited)				
A01	00001	EV0 gain	0	1	1	1	X	EVO [0000: -7 dB to 1111: 8 dB , step 1 dB , Reset: 0 dB$]$				X
A02	00010	EV1 gain	$\begin{array}{llll} 0 & 1 & 1 & 1 \end{array}$				X	EV1 [0000: -7 dB to $1111: 8 \mathrm{~dB}$, step 1 dB , Reset: 0 dB]				X
A03	00011	EV2 gain	X	X	0	11		X Receive mute (SW6b, 7b, 8b, 9b, 9c) 1: Mute 1 0 : No mute	X	$\begin{aligned} & \text { EV2 [000: }-15 \mathrm{~dB} \text { to } 111: 15 \mathrm{~dB}, \\ & \text { step } 5 \mathrm{~dB} \text {, Reset: } 0 \mathrm{~dB}] \end{aligned}$		
A04	00100	Transmit mute 1 (SW3, 4, 5) Receive mute 1 (SW6b, 7b, 8b, 9b, 9c)	0	X	X	X	0		X	X	X	Transmit mute (SW3, 4, 5) 1: Mute 1 0 : No mute
A05	00101	SW8, 3, 4, 5 mute 2	1	X	1	1	1	SW8 1: Mute 2 0 : No mute Valid when D_{4} of A04 is "0"	X	SW3 1:Mute 2 0: No mute Valid when	SW4 1: Mute 2 0: No mute Do of A04 i	SW5 1: Mute 2 0: No mute "0"
A06	00110	EV7 gain/ SW7b, 9b, 9c, 6 b mute 2	1	0	1	1	1	EV7 [00: -9 dB to 1 step 3 dB, Res	$1: 0 \mathrm{~dB}$, et: $-3 \mathrm{~dB}]$	SW7b 1: Mute 2 0: No mute Valid when	$\begin{aligned} & \begin{array}{l} \text { SW9b9c } \\ 1: \text { Mute } 2 \end{array} \\ & \frac{0: \text { No mute }}{} \\ & D_{4} \text { of } \overline{\text { AO4 }} \overline{\text { is }} \end{aligned}$	$\begin{aligned} & \text { SW6b } \\ & \text { 1:Mute 2 } \\ & \hline 0: \text { No mute } \\ & " 0 "-- \end{aligned}$
A07	00111	SW2, 11, 12, 10 control	X	1	0	0	0	X	$\begin{aligned} & \text { SW2 } \\ & 1: O N \\ & \hline 0: O F F \end{aligned}$	$\begin{aligned} & \text { SW11 } \\ & \text { 1:ON } \\ & 0: \text { OFF } \end{aligned}$	$\begin{aligned} & \text { SW12 } \\ & \text { 1:ON } \\ & 0: \text { OFF } \end{aligned}$	$\begin{aligned} & \text { SW10 } \\ & \text { 1: ON } \\ & 0: \text { OFF } \end{aligned}$
A08	01000	Digital parallel output	X	0	0	0	0	X	L03	L02	L01	L00
A09	01001	EV3 gain	0	1	1	1	X	EV3 [0000: 8 Reset: 15 dB	8 dB to 11 B]	$1: 23 \mathrm{~dB}, \mathrm{ste}$	$1 \mathrm{~dB},$	X

(Continued)

Data	Address	Meaning	Data Setting After a Reset					Data Meaning				
			D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	D_{4}	D_{3}	D_{2}	D 1	Do
A0A	01010	Tone [1] setting	0	0	0	0	0	Tone 1 waveform 1: Square wave 0 : Sine wave	$\mathrm{na}=\mathrm{a}_{7} \times 2^{7}+\mathrm{a}_{6} \times 2^{6}+\ldots+\mathrm{a}_{1} \times 2+\mathrm{a}_{0}$			
AOB	01011		X	0	0	1	0	X	a	a	a_{1}	ao
AOC	01100	Tone [2] setting	0	0	0	0	0	Tone 2 waveform 1:Square wave 0 : Sine wave	$n \mathrm{nb}=\mathrm{b}_{7} \times 2^{7}+\mathrm{b}_{6} \times 2^{6}+\ldots+\mathrm{b}_{1} \times 2+\mathrm{b}_{0}$			
AOD	01101		X	0	0	1	0	X	b_{3}	b_{2}	b_{1}	bo
AOE	01110	Tone waveform setting (for tones [1] and [2])	0	0	X	0	0	Divide ratio, Division ratio (TCLK/N) (M) 00'TCLK/1 12 divisions 01 TCLK/1 24 divisions 10'TCLK/2 ' 24 divisions 11. Use prohibited		X	Tone [1] control 1: Generate 0 : Stop	Tone [2] control 1: Generate 0 : Stop
AOF	01111	CODEC compression rule	X	X	X	0	0	X	X	X	CODEC compandinglaw00: μ-LAW01: Linear10: A-LAW11: Use prohibited	
A10	10000	PD control and SW14 control for CODEC, TONE, SGO, and transmission (TX)	0	0	0	0	0	$\begin{aligned} & \text { CODEC PD } \\ & \text { 1: PD } \\ & \text { 0: Operate } \end{aligned}$	$\begin{aligned} & \text { TONE PD } \\ & \text { 1: PD } \\ & \text { 0: Operate } \end{aligned}$	$\begin{aligned} & \text { SGO PD } \\ & \text { 1: PD } \\ & \text { 0: Operate } \end{aligned}$	Transmitter PD 1:PD 0 : Operate	SW14 1:TONE output 0 V 0 : Operate
A11	10001	PD control for RAUD, JEAR, TONE, and EAR	0	X	0	0	0	RAUD PD (SW8a) 1: Independent 0 : Linked Independent conjunction Linked: Pow with mute.	X Do not pow with mute. er-down cor	JEAR PD (SW7a) 1: Independent 0: Linked wer-down co responding	TONE PD (SW9a) 1: Independent 0 : Linked rresponding amplifier in	EAR PD (SW6a) 1: Independent 0 : Linked amplifier in onjunction
A12	10010	DOUT/SW1, 13, 9b, 9c	0	0	0	1	1	DOUT 1: Fixed at "H" 0 : Operate	SW1 mute 1: Mute 0 : No mute	SW13 mute 1: Mute 0 : No mute	SW9b mute 0 : Mute 1: No mute	SW9c mute 0 : Mute 1: No mute

The tone frequencies are as follows. (f_{a} and f_{b} are the frequencies of tones [1] and [2] respectively.)
(fin $=$ TCLK input frequency (512 kHz recommended when $\mathrm{N}=1, \mathrm{M}=12,1024 \mathrm{kHz}$ recommended when $\mathrm{N}=1$, $\left.\mathrm{M}=24 \rightarrow \mathrm{fin}^{\prime} /(\mathrm{N} \times \mathrm{M})=42.667 \mathrm{kHz}\right)$, N : Divide ratio (1 or 2), M: Number of divisions (12 or 24)) $\mathrm{f}_{\mathrm{a}}=\left(\mathrm{fin}^{2} /(\mathrm{N} \times \mathrm{M})\right) /\left(\mathrm{n}_{\mathrm{a}}+1\right), \mathrm{f}_{\mathrm{b}}=\left(\mathrm{fin}^{\mathrm{in}} /(\mathrm{N} \times \mathrm{M})\right) /\left(\mathrm{n}_{\mathrm{b}}+1\right)$
(Continued)

Data	Address	Meaning	Data Setting After a Reset					Data Meaning				
			D 4	D_{3}	D_{2}	D	D	D_{4}	D3	D_{2}	D_{1}	Do
A13	10011	EV8, EV6 gain	1	X	0	1	1	EV8 gain 1:10 dB $0: 0 \mathrm{~dB}$	X	EV6 [000: -14 dB to $111: 0 \mathrm{~dB}$, step 2 dB , Reset: -8 dB]		
A14	10100	EV4 gain	X	X	0	1	1	X	X	EV4 [000: -30 dB to $111: 0 \mathrm{~dB}$, step 5 dB , Reset: -15 dB]		
A15	10101	EV9, EV5 gain	1	X	0	1	1	$\begin{aligned} & \text { EV9 gain } \\ & \frac{1: 6 \mathrm{~dB}}{0: 0 \mathrm{~dB}} \end{aligned}$	X	EV5 [000: -11 dB to 111: -18 dB , step 1 dB , Reset: -14 dB]		
A16	10110	SW15, 16 control	X	X	X	0	0	X	X	X	SW15 1: AMP5 0: AMP4	$\begin{aligned} & \text { SW16 * } 1 \\ & \text { 1: Envelope } \\ & \text { 0: ATT } \end{aligned}$
A17	10111	All PD	X	X	X	X	1	X	X	X	X	All circuits PD $\frac{1: \text { Normal }}{0: P D}$

Notes: 1. When unused, connect the MDI input to OPEN or SGC. When using ATT, an SGC-centered signal or capacitive coupling is required (to prevent an offset).
2. Set X to 0 .
3. Set to initial value by a reset \qquad section).

(2) Transmitting audio mute settings

Switches SW1, SW3, SW4, SW5, SW10, and SW11 have the following functions. Address 00100 signals have priority.

Setting					Switching setting						Remarks
Address	A_{4} to A_{0}	A_{4} to A_{0}	A_{4} to A_{0}	A_{4} to A_{0}							
	00100	00101	00111	10010							
Data bit	D4 to Do	D4 to Do	D_{4} to D0	D4 to Do	SW1	SW3	SW4	SW5	SW10	SW11	Microphone amp [1], [2] mute Microphone amp [2] mute Microphone amp [1] mute
	- * * 1	-*---	*----	-----	-	\times	\times	\times	-	-	
	- * * * 0	- * 01 -	*----	-----	-	\bigcirc	\times	-	-	-	
	- * * 0	- * 10 -	*----	-----	-	\times	\bigcirc	-	-	-	
	- * * * 0	-*--0	*-0-0	-	-	-	-	\bigcirc	\times	\times	
	- * * * 0	-* -1	* - 0-1	--	-	-	-	\times	\bigcirc	\times	
	- * * 0	-*--1	*-1-0	-----	-	-	-	\times	\times	\bigcirc	
	-***	- * - - -	*----	- 1 ---	\times	-	-	-	-	-	

$\mathrm{O}: \mathrm{ON}, \times:$ OFF, — : not determined

(3) Receiving audio mute settings

Switches SW6b, SW7b, SW8b, SW9b, SW9c, and SW12 have the following functions. Address 00100 signals have priority.

Setting						Switching setting						Remarks
Address	A_{4} to A_{0}											
	00100	00101	00110	00111	10010							
Data bit	D_{4} to D_{0}	D4 to D0	D_{4} to D_{0}	D_{4} to D_{0}	D_{4} to D_{0}	SW6b	SW7b	SW8b	SW9b	SW9c	SW12	
	1***	- *---	-----	* - - -	-----	\times	\times	\times	\times	\times	-	
	0 * * -	1*---	-----	*----	-----	-	-	\times	-	-	-	
	0*** -	0*---	--1--	* - - - -	-----	-	\times	\bigcirc	-	-	-	
	0*** -	-*---	--01-	* - - - -	-----	-	\bigcirc	-	\times	\times	-	
	0 * * -	-*---	---0-	* - - - -	---0 1	-	-	-	\times	\bigcirc	-	
	0 * * -	-*---	---0-	* - - - -	---10	-	-	-	\bigcirc	\times	-	
	0*** -	-*---	----1	* ----	-----	\times	-	-	-	-	-	
	0 * * -	- *---	----0	* 0---	-----	\bigcirc	-	-	-	-	\times	
	0*** -	-*---	-----	* 1---	-----	-	-	-	-	-	\bigcirc	

$\bigcirc: O N, \times:$ OFF, $-:$ not determined

(4) Electronic volume controls

There are ten different electronic volume controls, EV0 through EV9, with the following specifications. Electronic volume control settings are made by the SRD, SRC and STB signals, and setting values are reset by the XPRST signal.

Table 1 Relation of Volume Control Data bit Values to Gain

Code	Address	00001	00010	00011	01001	10100	10101	10011	00110	10011	10101	Unit
	Data	EVO	EV1	EV2	EV3	EV4	EV5	EV6	EV7	EV8	EV9	
	$D_{4} D_{3} D_{2} D_{1} D_{0}$	Inverted	NonInverted	Inverted	Inverted	NonInverted	NonInverted	NonInverted	NonInverted	NonInverted	NonInverted	
		D_{4} to D_{1}	D_{4} to D_{1}	D_{2} to D_{0}	D_{4} to D_{1}	D_{2} to D_{0}	D_{2} to D_{1}	D_{2} to D_{0}	D_{4} to D_{3}	D4	D	
0	00000	-7	-7	-15	8	-30	-11	-14	-9	0	0	
1	00001			-10		-25	-12	-12	-9	0	0	
2	00010	-6	-6	-5	9	-20	-13	-10	-9	0	0	
3	000011			0		-15	-14	-8	-9	0	0	
4	000100	-5	-5	5	10	-10	-15	-6	-9	0	0	
5	000101			10		-5	-16	-4	-9	0	0	
6	000110	-4	-4	15	11	0	-17	-2	-9	0	0	
7	000111			15		0	-18	0	-9	0	0	
8	01000	-3	-3		12				-6			
9	010001								-6			
10	01010	-2	-2		13				-6			
11	0010011								-6			
12		-1	-1		14				-6			
13 14									-6			
14 15	$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1\end{array}$	0	0		15				-6			
16	10000	1	1		16		-11	-14	-3	10	6	dB
17	10001						-12	-12	-3	10	6	
18	10010	2	2		17		-13	-10	-3	10	6	
19	10011						-14	-8	-3	10	6	
20	10100	3	3		18		-15	-6	-3	10	6	
21	10101						-16	-4	-3	10	6	
22	10110	4	4		19		-17	-2	-3	10	6	
23	10111						-18	0	-3	10	6	
24	11000	5	5		20				0			
25	11001								0			
26	111010	6	6		21				0			
27	110011								0			
28	11100	7	7		22				0			
29	$\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & \end{array}$								0			
30 31	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}$	8	8		23				0			

Notes: - Each setting value is determined in relation to the initial setting value.

- Returns to initial value at reset (\qquad parts)
-The "Inverted" and "Non-Inverted" columns indicate the I/O phase.
- Settings with no gain figure listed are undefined.

(5) Tone generation circuit

This section describes the frequency settings and output control.

- Tone frequency control register

The clock used to generate tones is the clock input from TCLK divided by 1 or 2 . The divide ratio is set by the data at address 01110 . Also, 12 division and 24 division modes are available to generate a smooth frequency even at low frequencies.

Table 2 Register Control for the TONE Clock Frequency

Address 01110		Tone Generation Clock (fin)	Waveform Division
\mathbf{D}_{4}	\mathbf{D}_{3}		
0	0	Frequency input to TCLK	12 divisions
0	1	Frequency input to TCLK	24 divisions
1	0	Frequency input to TCLK divided by 2	24 divisions
1	1	Prohibited	

The following formula specifies the frequencies that can be set by the tone frequency control register.
Set frequency $f=\mathrm{fiN}_{\mathrm{N}}(\mathrm{M} \times(1+\mathrm{n})$), $\mathrm{M}=$ division mode (12 or 24)

$$
\begin{aligned}
& n=4,5, \ldots, 255 \text { (fin: Tone generation clock) } \\
& f_{\mathrm{in}}=4 \mathrm{MHz} \text { max. }
\end{aligned}
$$

Therefore, the range of available frequencies in 12 division mode and $\mathrm{fin}=512 \mathrm{kHz}$, and in 24 division mode and fin $=1024 \mathrm{kHz}$ is:

$$
f_{\min }=167 \mathrm{~Hz}, f_{\max }=8533 \mathrm{~Hz}
$$

Table 3 lists the frequency settings for all the standard DTMF frequencies.
Table 3 Tone Frequency Register Control
(Setting: 12 divisions and fin $=512 \mathrm{kHz}$, or 24 divisions and $\mathrm{fin}=1024 \mathrm{kHz}$)

Tone Type		Standard Frequency (Example of generated frequency)	Set Frequency	$\begin{gathered} \hline \text { Address } \\ 01010 / 01100 \end{gathered}$					$\begin{gathered} \hline \text { Address } \\ 01011 / 01101 \end{gathered}$					n	Error	
		D4					Do	D4	D_{3}			Do				
Service tones (Single tone)			400 Hz	398.7 Hz	-	0	1	1	0	*	1	0	1	0	106	-0.32\%
		2000 Hz	2031.7 Hz	-	0	0	0	1	*	0	1	0	0	20	1.56\%	
Low tones D T T		697 Hz	699.4 Hz	-	0	0	1	1	*	1	1	0	0	60	0.34\%	
		770 Hz	775.7 Hz	-	0	0	1	1	*	0	1	1	0	54	0.74\%	
		852 Hz	853.3 Hz	-	0	0	1	1	*	0	0	0	1	49	0.15\%	
		941 Hz	948.1 Hz	-	0	0	1	0	*	1	1	0	0	44	0.75\%	
$\begin{gathered} M \\ \mathrm{~F} \end{gathered}$	High tones	1209 Hz	1219.0 Hz	-	0	0	1	0	*	0	0	1	0	34	0.82\%	
		1336 Hz	1333.3 Hz	-	0	0	0	1	*	1	1	1	1	31	-0.20\%	
		1477 Hz	1471.3 Hz	-	0	0	0	1	*	1	1	0	0	28	-0.38\%	
		1633 Hz	1641.0 Hz	-	0	0	0	1	*	1	0	0	1	25	0.48\%	

Notes: • Settings are shown in binary notation.

- Error is the error between the set frequency and standard frequency.
- Set n to 4 or higher and set a frequency of 5 kHz or less.

MB86437

- Tone output waveform

The D_{4} data bit at address 01010,01100 may be used to select either sine-wave or trapezoidal waveforms for tone output.

- Tone output control

Tone output is controlled by addresses 01110 and 00111. Provided TCLK does not stop, sine wave output always halts close to zero. Also, SW2 controls output muting.

- Tone envelope

Even if the tone halts at close to zero, changes in the DC voltage can still occur can be audible. Using SW16 for tone control enables the voltage level for tone generation to be controlled. The waveform amplitude characteristics have the following general relationships.
$\mathrm{Va}=2 \times(0.47-0.12 \times \mathrm{VI})(\mathrm{VI}: \mathrm{MDI}$ voltage, $\mathrm{Va}=$ Tone amplitude $)$

For a cut off frequency of 8.3 Hz , control clock of 0 to 3 V , and $\mathrm{SGC}=1.5 \mathrm{~V}$, the envelope ratio and resistor and capacitor values are as follows.

Envelope Ratio Aim Value	Recommended Values			Vh, VI Voltages		Envelope Ratio Calculated Value
	$\mathbf{R 4}$	$\mathbf{R 5}$	$\mathbf{C 1}$	Max. (Vh)	Min. (VI)	
-3 dB	$33 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$	$1.5 \mu \mathrm{~F}$	0.828 V	0.584 V	-3.13 dB
-4 dB	$47 \mathrm{k} \Omega$	$18 \mathrm{k} \Omega$	$1.5 \mu \mathrm{~F}$	0.824 V	0.516 V	-4.05 dB
-5 dB	$82 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega$	$1.5 \mu \mathrm{~F}$	0.810 V	0.448 V	-5.15 dB
-6 dB	$270 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega$	$1.5 \mu \mathrm{~F}$	0.790 V	0.400 V	-5.91 dB

MB86437

(6) CODEC I/O

Code companding for μ-law and A-law is in accordance with CCITT Recommendation G.711.
Linear coding uses 14 -bit, two's complement code which is output MSB-first.
Address 01111 is used to control μ-law, A-law, and linear code I/O.

Table 4 Table of Linear Code vs. Voltage

(7) Parallel output

LOO to 3 are general-purpose latch outputs for external control. LOO to 3 output the data written to address 01000 .
The outputs are CMOS outputs. Data output continues during power-down.

2. Analog Input

Analog inputs in the MB86437 include the two microphone inputs and the three accessory input.

(1) Microphone amps

The microphone amps take the incoming signal from the microphones and amplify it to any desired level of gain. The microphone amps are low-noise types for use with capacitor microphones, and are capable of a wide range of amplification. All microphone amps must be AC coupling with capacitors to prevent amplification of DC offset level.

(2) Accessory input

Direct input from the TAUD to the codec unit is possible through SW5, without passing through the microphone amp. Care must be taken with the input signal in this case, however, because input resistance is not at highimpedance level.

Microphone amp output may be added to the signal by using switching controls.
In this case, the result will be at the additional output level.
In addition, SW10 and SW11 may be used to transmit digital data from the TAUD to EXSD and DSCK, allowing the sending of fax or PC data without modification.

Note: TAUD, EXSD, and DSCK contain no buffers. If not used, TAUD, EXSD and DSCK should be connected to SGC.

3. Analog Output Relationships

The four analog outputs consist of three speaker drivers (for receiver, earphone, and tone) and an accessory output.

(1) Speaker driver amps

The speaker driver amps consist of one BTL output (the receiver output) and one single output (the earphone output). Also, the sounder driver consists of one single output and the sounder output can be obtained via a transistor. As the speaker amps have high power consumption, separate power-down control is available for each speaker amp.

Parameter	Receiver Speaker Amp (EAR, XEAR)	Earphone Speaker Amp (JEAR)	Tone Amp (TONE)
Output type	BTL	Single	Single
Load resistance ${ }^{* 1}$	32Ω (typ.)	32Ω (typ.)	600Ω (typ.)
Load capacitance ${ }^{* 2}$	$0.1 \mu \mathrm{~F}$.	$0.1 \mu \mathrm{~F}$.	5 mW (min.)
Maximum output power	10 mW (min.)		

*1: Dynamic speaker
*2: A capacitor is required to prevent oscillation.

- Analog output connection example

Note: Insert C_{1} capacitors of approximately $0.1 \mu \mathrm{~F}$ to prevent oscillation. C_{2} is to cut DC .

To Top / Lineup / Index MB86437

4. Reception Connections

This section describes reception connections, sidetone addition, and melody IC connection.

(1) Reception connections

This describes the connection to the speaker amp for the reception signal.
Provide a high-pass filter at AMP4 to prevent a DC offset being applied to the speaker amp.

- First-order high-pass filter

(2) Sidetone addition

Sidetone addition is implemented by connecting the STA output and AMP4. In this case, use of a resistor of approximately $100 \mathrm{k} \Omega$ at AMP4 is recommended as the SW1 on resistance affects the sidetone gain.

(3) Melody IC connection

A melody IC can be connected using AMP4. However, the level can be made to vary in the same way as the tone if the MDI pin is used. MDI has an input impedance of approximately $140 \mathrm{k} \Omega$ and is not high impedance.

(4) JEAR signal selection

JEAR can receive a signal from AMP4 or AMP5. This enables a range of applications to be implemented depending on the AMP4 and AMP5 circuit structures.

- Example of switching EAR and JEAR

(5) Preventing a clicking sound when the electronic volume gain is changed or when muting

Changing the gain of the electronic volume or muting may result in a clicking sound due to fluctuation in the DC level. In such cases, the following setting is recommended.

Set the mode in which powering down the speaker amplifier is not linked with SW6b, 7b, 8b, and 9b (ADDRESS: 10001, DATA: 10111) and mute using SW6b, 7b, 8b, and 9b.

5. Power-Save Mode

This section describes the setting methods and states.

(1) Mode setting

Power-save mode can be controlled by an external control signal and register setting.
The various modes set each block to a power-save state, enabling the power consumption to be reduced.

- Power-save mode setting table

Mode	$\begin{gathered} \text { PS } \\ \text { or } \\ \text { Address } \\ 10111 \end{gathered}$	Address														$\begin{gathered} \text { SYNC } \\ \text { or } \\ \text { CLK } \\ \\ \text { STOP } \end{gathered}$	$\begin{aligned} & \stackrel{u}{\underset{\sim}{u}} \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Reception				
		00100		00101	00110			10000				10001						! in							$\underset{\text { 인 }}{\underset{\sim}{2}}$	¢
		D4	Do	D4	D_{2}	D_{1}	D	D 4	D_{3}	D_{2}	D 1	D4	D_{2}	D_{1}	Do											
All PD	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\times									
VREF operation	1	-	-	-	-	-	-	-	-	0	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
SGO PD	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	\bigcirc	\times	-	-	-	-	-	-	-	-
TONE operation	1	-	-	-	-	-	-	-	0	-	-	-	-	-	-	-	\bigcirc	-	-	-	O	O	-	-	-	-
CODEC, TONE PD	1	-	-	-	-	-	-	1	1	-	-	-	-	-	-	-	\bigcirc	-	-	\times						
CODEC operation	1	-	-	-	-	-	-	0	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	-	-	-	-
CODEC SYNC PD	1	-	-	-	-	-	-	0	-	-	-	-	-	-	-	\times	\bigcirc	-	-	\times	-	\bigcirc	-	-	-	-
Transmission operation	1	-	-	-	-	-	-	-	-	-	0	-	-	-	-	-	\bigcirc	-	O	-	-	-	-	-	-	-
$\begin{aligned} & \text { Transmission } \\ & \text { PD } \end{aligned}$	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	\bigcirc	-	\times	-	-	-	-	-	-	-
Reception operation	1	1	-	1	1	1	1	0	1	-	-	0	1	0	0	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\times	\bigcirc	\times	\times
	1	0	-	1	1	1	0	0	1	-	-	0	1	0	0	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\times	\bigcirc	\times	\bigcirc
	1	0	-	1	1	0	1	0	1	-	-	0	0	0	1	-	\bigcirc	-	-	O	-	\bigcirc	\times	\times	\bigcirc	\bigcirc
	1	1	-	0	0	0	0	0	1	-	-	1	1	0	0	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\times	\times
	1	0	-	1	1	1	1	0	1	-	-	1	1	1	1	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

O: Operation enabled, \triangle : Changes depending on address 10001, \times : Power-down
Note: Powering down the CODEC or TONE generator powers down the entire reception block.

Mode	PSorAddress10111	Address																			$\begin{gathered} \text { SYNC } \\ \text { or } \\ \text { CLK } \end{gathered}$	Output Pin State											
		00100		00101			00110		00111	10000				10001			10010						$\stackrel{\underset{\sim}{\underset{\sim}{x}}}{\underset{\sim}{x}}$					$\stackrel{\boxed{5}}{5}$	$$				
		D_{4} D	$\mathrm{D}_{0} \mathrm{D}$	D_{4}	D_{2}	Do	D_{2} D	Do	D_{3}	D_{4} D	D_{2}	D_{1}	Do D	D_{4} D	D_{1}	Do	D_{4} D	$\mathrm{D}_{3} \mathrm{D}_{2}$	D_{1}	D													
All PD	0																					\times	$\times \times$	\times									
Recep-	1	1							1					1	0	0		1				S	$\times \mathrm{S}$	\times	S	-	-	-	-	\bigcirc	-		
tion mute	1	0	1				11	1						0	1	1						\times	S \times	S	-	-	-	-	-	\bigcirc	-		
SGO PD	1										1											-	-	-	-	-	-	-	-	O	\times		-
CODEC, TONE PD	1									1												\times	$\times \times$	\times	R	-	-	-	R	O	-	H	
Transmission PD	1											1										-	- -	-	-	\times	R	R1	-	O	-		
Transmission halt	-											0					1					-		-	-	-	-	-	-	-	-	H	
Trans-	1		1									0										-	-	-	-	\bigcirc	S	\times	-	\bigcirc	-		
missio mute	1		0	1	1	1						0										-	-	-	-	O	S	S	-	O	-		
$\begin{aligned} & \text { CODEC } \\ & \text { SYNC } \\ & \text { PD } \end{aligned}$	1									0											STOP	-	-	-	-	-	-	-	-	O	-		
CODEC operation	1									0											\bigcirc	-	-	-	O	-	-	-	O	O	-		
TONE operation	1																					-	-	-	O	-	-	-	-	O	-		
TONE mute	1																		1	1		-	- -	S	-	-	-	-		O	-		
$\begin{aligned} & \text { TONE } \\ & \text { GND } \end{aligned}$	1												1									-	- -	G	-	-	-	-		\bigcirc	-		

To Top / Lineup / Index MB86437

TIMING CHART

(1) Codec-Related Signals

(2) Microcomputer Data-Related Signals

ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Rating		Unit
		Min.	Max.	
Power supply voltage	V_{DD}	-0.3	+6.0	V
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Digital input voltage	$\mathrm{V}_{\mathrm{DIN}}$	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Storage temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Operating temperature	Ta	-	-20	25	80	${ }^{\circ} \mathrm{C}$
Power supply voltage	Vdo	VD1, VD2, VD3	2.7	3.0	3.6	V
"H" level digital input voltage	V_{H}	All digital input pins	VDD $\times 0.7$	-	Vod	V
"L" level digital input voltage	VL		0.0	-	$V_{D D} \times 0.3$	V
Analog output load resistance	RLb	*2	50	-	-	k Ω
Analog output load capacity	Clb	$\begin{aligned} & \text { BTPO, BBO, PTBO, TBO, } \\ & \text { SGO } \end{aligned}$	-	-	20	pF
	CLs	Between SGC-VS4	-	10	-	$\mu \mathrm{F}$
Analog output load resistance*1	RLE	Between EAR-XEAR	28	32	-	Ω
Analog output load capacity*1	Cle	EAR, Between XEAR-GND	0.1	-	-	$\mu \mathrm{F}$
Analog output load resistance*1	RLJ	JEAR	28	32	-	Ω
Analog output load capacity*1	CLJ	Between JEAR-GND	0.1	-	-	$\mu \mathrm{F}$
Analog output load resistance	RLt	TONE	600	-	-	Ω
Analog output load capacity	Clt		-	-	100	pF
Analog output load resistance	RLm	MICO, JMICO	10	-	-	$\mathrm{k} \Omega$
Analog output load capacity	Clm		-	-	20	pF
Analog output load resistance	RLm	RAUD	5	-	-	$\mathrm{k} \Omega$
Analog output load capacity	Clm		-	-	20	pF
Analog output voltage	$V_{\text {aout }}$	All Amp. output pins	0.45	-	VDD-0.45	V
Analog input voltage	$V_{\text {AIN }}$	All Amp. input pins	1.2	1.5	1.8	V
TCLK frequency	Ftalk	TCLK	-	-	4.0	MHz

*1: Dynamic typ speakers
*2: BTPO, BBO, PTBO, TBO, SGC, SGO

MB86437

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

Parameter	Symbol	Pin	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply current at full power-down mode	IPD	All Vdp pins	$\begin{aligned} & \text { PS = 0 } \\ & \text { Digital input = GND } \end{aligned}$	-	0.5	50	$\mu \mathrm{A}$
Power supply current for normal operation (all operation)	Ivo2		All blocks operating, CLK = 2048, SYNC $=8 \mathrm{kHz}$, no signal	-	5.0	10	mA
Digital input current	Ін	All digital input pins	-	-	-	10	$\mu \mathrm{A}$
	ILL		-	-	-	10	$\mu \mathrm{A}$
Digital output voltage	Vон	All digital output pins	$\mathrm{I} \mathrm{H}=-1.5 \mathrm{~mA}$	VDD $\times 0.8$	-	VDD	V
	VoL		$\mathrm{loL}=1.5 \mathrm{~mA}$	0.0	-	VDDX0.2	V
Input offset voltage	Vfm	Between MIC-XMIC	MICO-MIC short	-10	-	10	mV
Output offset voltage	Vfe	Between EAR-XEAR	TBO-TBI short EV6 $=0 \mathrm{~dB}$	-20	-	20	mV
SGC output voltage	Vsgc	SGC	-	1.40	1.50	1.60	V
Inter-pin resistance	Rsw	Between SWI-SWO	SW12 = on	-	-	2	$k \Omega$
	Rte	Between TAUD-EXSD	$\begin{aligned} & \text { SW10 = on, SW11 = off, } \\ & \text { SW5 = off } \end{aligned}$	-	-	2	$k \Omega$
	Rto	Between TAUD-DSCK	$\begin{aligned} & \text { SW10 = off, SW11 = on, } \\ & \text { SW5 = off } \end{aligned}$	-	-	2	$\mathrm{k} \Omega$
	Rtg	Between TONE-VS	SW14 = on	-	-	2	$\mathrm{k} \Omega$
	Rbs	Between BBO-STA	SW1 = on	-	-	2	$\mathrm{k} \Omega$
Input resistance	Rita	TAUD	Operating	70	100	140	k Ω
	Rimda	MDI	Operating, SW16 = ATT	100	140	200	$\mathrm{k} \Omega$
	Rimd	MDI	Operating, SW16 = envelope	150	210	300	$\mathrm{k} \Omega$
Analog output off leak	lofy	RAUD, TONE	$\begin{aligned} & \text { SW8a, SW9a, b, c, } \\ & 14=0 \text { off, Vin }=0 \text { to Vod } \end{aligned}$	-10	-	10	$\mu \mathrm{A}$

Note: Measurement conditions: ■ Standard Test Circuit

2. AC Characteristics

(1) Codec-Related Signals

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Digital input rise time	tR	$\mathrm{V} \times 0.3 \rightarrow \mathrm{Vs} \times 0.7$	-	-	50	ns
Digital input fall time	tF		-	-	50	ns
Shift clock frequency	fc	μ-law, A-law	64	-	3152	kHz
		Linear	128	-	3152	kHz
Shift clock pulse width (H)	twch	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{s} \times 0.7$	1/fc $\times 0.3$	-	1/fc $\times 0.7$	ns
Shift clock pulse width (L)	twal	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{s}} \times 0.3$	$1 / \mathrm{fc} \times 0.3$	-	$1 / \mathrm{fc} \times 0.7$	ns
Sync frequency	fs	-	-	8	-	kHz
Sync pulse width	tws	-	1/fc	-	62	$\mu \mathrm{s}$
SYNC to CLK setup time	tsx	-	100	-	-	ns
CLK to SYNC hold time	txs	-	50	-	-	ns
CLK to DIN hold time	tro	-	50	-	-	ns
DIN to CLK setup time	tor	-	50	-	-	ns
SYNC to DOUT delay time	tzD	BIT 1	-	-	200	ns
CLK to DOUT delay time	tco	BIT 2 to 8	-	-	200	ns
CLK to DOUT disable time	toz	"H"	-	-	200	ns

(2) Microcomputer Data-Related Signals

Parameter	Symbol	Pin	Value			Unit
			Min.	Typ.	Max.	
SRC to SRD data setup time	tssc	SRD, SRC	50	-	-	ns
SRC to SRD data hold time	thsc		50	-	-	ns
SRC to STB setup time	tscb	SRC, STB	50	-	-	ns
SRC pulse width (H)	twh	SRC	200	-	-	ns
SRC pulse width (L)	twL		200	-	-	ns
STB pulse width	tos	STB	50	-	-	ns
STB to SRC hold time	tнсв	STB, SRC	50	-	-	ns
LO0 to 3 delay time	tıD	LOO to 3	-	-	200	ns
Shift clock frequency	fsclk	SRC	-	-	2048	kHz
Reset pulse width	twre	XPRST	1	-	-	$\mu \mathrm{s}$

3. Transmission Characteristics

(1) Microphone Amp System

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Gain (between MICO and BBO)	Gмв	$\begin{aligned} & \mathrm{MICO}=-20 \mathrm{dBV}, 1020 \mathrm{~Hz} \\ & \mathrm{SW} 3=\mathrm{on}, \mathrm{SW} 1=\mathrm{SW} 4=\mathrm{SW} 5=\mathrm{off} \\ & \mathrm{EV} 0=0 \mathrm{~dB} \end{aligned}$	-1.5	-	1.5	dB
Gain (between JMICO and BBO)	$\mathrm{G}_{\text {в }}$	$\begin{aligned} & \mathrm{JMICO}=-20 \mathrm{dBV}, 1020 \mathrm{~Hz} \\ & \mathrm{SW} 4=0 \mathrm{on}, \mathrm{SW} 1=\mathrm{SW} 3=\mathrm{SW} 5=\mathrm{off} \\ & \mathrm{EV} 0=0 \mathrm{~dB} \end{aligned}$	-1.5	-	1.5	dB
Gain (between TAUD and BBO)	Gтв	$\begin{aligned} & \text { TAUD }=-20 \mathrm{dBV}, 1020 \mathrm{~Hz} \\ & \text { SW5 }=0 \text { on, SW } 1=\mathrm{SW} 3=\mathrm{SW} 4=\mathrm{off} \\ & \mathrm{EV} 0=0 \mathrm{~dB} \end{aligned}$	-1.5	-	1.5	dB
Signal to noise ratio (Microphone amp [1])	Smв	$\begin{aligned} & \text { Ain1 }=-40 \mathrm{dBV}(+20 \mathrm{dBgain}), 1020 \mathrm{~Hz} \\ & \text { SW3 }=\text { on, SW1 }=\mathrm{SW} 4=\mathrm{SW} 5=\text { off } \\ & \text { C message, Measured at MICO } \end{aligned}$	40	-	-	dB
Signal to noise ratio (Microphone amp [2])	Sıв	$\begin{aligned} & \text { Ain2 }=-40 \mathrm{dBV}(+20 \mathrm{dBgain}), 1020 \mathrm{~Hz} \\ & \mathrm{SW} 4=\text { on, SW1 }=\mathrm{SW} 3=\mathrm{SW} 5=\text { off } \\ & \mathrm{C} \text { message, Measured at JMICO } \end{aligned}$	40	-	-	dB
Signal to noise ratio (BBO)	Sтв	TAUD $=-40 \mathrm{dBV}, 1020 \mathrm{~Hz}$, SW5 = on, SW1 = SW3 = SW4 = SW10 = SW11 = off, EV0 $=0 \mathrm{~dB}, \mathrm{C}$ message, Measured at BBO	40	-	-	dB

Note: Measurement conditions: $■$ Standard Test Circuit

(2) Reception

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Gain Conditions: $\mathrm{TBO}=-20 \mathrm{~dB}, 1020 \mathrm{~Hz}$	Gtr	Measured at RAUD	-1	0	1	dB
	$\mathrm{G}_{\text {te }}$	EV6 = 0 dB, Measured between EAR and XEAR	5	6	7	
	GTJ	EV7 $=0 \mathrm{~dB}$, Measured at JEAR	-1	0	1	
	Gтt	EV8 $=0 \mathrm{~dB}, \mathrm{SW} 9 \mathrm{~b}=\mathrm{on}$, SW9c = off, Measured at TONE	-1	0	1	
Output power	Pe	R $=32 \Omega$, Between EAR and XEAR, EV6 $=0 \mathrm{~dB}, \mathrm{THD}=10 \%, 1020 \mathrm{~Hz}$	10.0	-	-	mW
	PJ	$\begin{aligned} & \mathrm{R}=32 \Omega, \mathrm{JEAR}, \mathrm{EV} 7=0 \mathrm{~dB}, \\ & \mathrm{THD}=10 \%, 1020 \mathrm{~Hz} \end{aligned}$	5.0	-	-	mW
Signal to noise ratio	Str	$\begin{aligned} & \text { TBO }=-40 \mathrm{dBV}, 1020 \mathrm{~Hz}, \\ & \mathrm{SW} 6 \mathrm{~b}=\mathrm{SW} 7 \mathrm{~b}=\mathrm{SW} 8 \mathrm{~b}=\mathrm{SW} 9 \mathrm{~b}=\mathrm{on}, \\ & \mathrm{SW} 15=A M P 4, E V 6,7,8=0 \mathrm{~dB} \\ & \mathrm{C} \text { message, RAUD, EAR-XEAR, } \\ & \text { Measured at JEAR } \end{aligned}$	40	-	-	dB
	Stı	SGO = -40 dBV, 1020 Hz , SW7b = on, SW15 = AMP5, C message, Measured at JEAR	40	-	-	dB

(3) TONE

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
TONE output level	GT1	$\begin{aligned} & \text { Generating } 1 \text { tone, } \mathrm{f}_{1}=948.1 \mathrm{kHz} \text {, sine wave } \\ & \text { SW2 }=\text { off, SW9 } \mathrm{SW}=\mathrm{off}, \mathrm{SW} \mathrm{~S} 9=\mathrm{on}, \mathrm{MDI}=\mathrm{OPEN} \\ & \mathrm{EV} 3=15 \mathrm{~dB}, \mathrm{EV} 4=-15 \mathrm{~dB}, \mathrm{EV} 9=0 \mathrm{~dB}, \\ & \text { Measured at TONE } \end{aligned}$	-12.0	-14.0	-16.0	dBV
	GT2	Generating 2 tones, $\mathrm{f}_{1}=948.1 \mathrm{kHz}$, $\mathrm{f}_{2}=1219.1 \mathrm{kHz}$, simultaneous sine wave generation SW2 = off, SW9b = off, SW9c = on, MDI = OPEN $E V 3=15 \mathrm{~dB}, \mathrm{EV} 4=-15 \mathrm{~dB}, \mathrm{EV} 9=0 \mathrm{~dB}$, Measured at TONE	-12.0	-14.0	-16.0	dBV
	GT3	$\begin{aligned} & \text { MDI }=1020 \mathrm{~Hz},-10 \mathrm{dBV} \text { input } \\ & \text { SW2 }=0 \text { on, SW13 }=\text { off, DUAL TONE }=\text { off } \\ & \mathrm{EV} 2=0 \mathrm{~dB}, \mathrm{EV} 3=15 \mathrm{~dB}, \mathrm{EV} 4=-15 \mathrm{~dB}, \\ & \mathrm{EV} 5=-14 \mathrm{~dB}, \text { Measured at PTBO } \end{aligned}$	-27.0	-29.0	-31.0	dB
Harmonic level	$\mathrm{H}_{\text {т }}$	$\begin{aligned} & \text { EV3 }=15 \mathrm{~dB}, \mathrm{EV} 4=-15 \mathrm{~dB}, \mathrm{EV} 9=0 \mathrm{~dB}, \\ & \text { SW9c }=\text { on } \\ & \text { SW2 }=\text { SW9b }=\text { off, MDI }=\text { OPEN, Generating a } \\ & \text { single tone, Measured at TONE, nth harmonic } \\ & \text { level (} \mathrm{n}=2 \text { to } 5 \text {) } \end{aligned}$	-	-	-38	dB
	$\mathrm{H}_{\text {tP }}$	$\begin{aligned} & \mathrm{EV} 3=15 \mathrm{~dB}, \mathrm{EV} 4=-15 \mathrm{~dB}, \mathrm{EV} 5=-15 \mathrm{~dB}, \mathrm{EV} 2 \\ & =15 \mathrm{~dB} \\ & \text { SW2 = on, SW9c }=\text { SW13 }=\text { off, MDI = OPEN, } \\ & \text { Generating a single tone, Measured at PTBO, } \\ & \text { nth harmonic level }(\mathrm{n}=2 \text { to } 5) \end{aligned}$	-	-	-38	dB

(4) Reception and transmission (CODEC, Analog section)

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Crosstalk (Transmission \rightarrow reception)	CTX	$\begin{aligned} & \text { Ain1 }=1020 \mathrm{~Hz},-8.5 \mathrm{dBV}(0 \mathrm{dBgain}) \\ & \text { DiN = "H" } \\ & \text { Measurement: RAUD } 1020 \mathrm{~Hz} \end{aligned}$	-	-	-50	dB
Crosstalk (Reception \rightarrow transmission)	CTR	$\begin{aligned} & \mathrm{D} \ln =1020 \mathrm{~Hz}, 0 \mathrm{dBm} 0 \\ & \mathrm{~A}_{\mathrm{IN}}=\text { SGC } \end{aligned}$ Measurement: DOUT 1020 Hz	-	-	-50	dB
Power supply noise rejection ratio	PSRR	$\begin{aligned} & 0<f<50 \mathrm{kHz}, \mathrm{~V}_{\mathrm{DD}}+30 \mathrm{mV} \text { OP } \\ & \mathrm{C} \text { message } \\ & \text { AIN }^{2} \text { SGC, } \mathrm{DiN}_{\mathrm{IN}}=\mathrm{ICN} \end{aligned}$	-	22	-	dB
Electronic volume gain error	GEV	EV0, EV1, EV3, EV5 Gain error relative to reset value Input = $1020 \mathrm{~Hz},-20 \mathrm{dBV}$	-0.7	-	0.7	dB
		EV2, EV4, EV6, EV7, EV8, EV9 Gain error relative to reset value Input $=1020 \mathrm{~Hz},-20 \mathrm{dBV}$	-1.0	-	1.0	dB

(Continued)

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Mute level	Gmsw2	$\begin{aligned} & \text { SW2 }=\text { SW3 }=\text { off, } \mathrm{EV} 4=-15 \mathrm{~dB} \\ & \mathrm{EV} 2=0 \mathrm{~dB}, \mathrm{EV} 3=15 \mathrm{~dB} \\ & \mathrm{MDI}=1020 \mathrm{~Hz},-30 \mathrm{dBV} \text { Measured at PTBO } \end{aligned}$	-	-	-40	dB
	Gmsw34	SW1, 3, 4, $5=0 \mathrm{ff}$, EV0 $=0 \mathrm{~dB}$ AIN1 or AIN2 $=1020 \mathrm{~Hz},-30 \mathrm{dBV}$ Measured at BBO	-	-	-40	dB
	Gmsw5	SW1, 3, 4, $5=0 \mathrm{ff}$, EV0 $=0 \mathrm{~dB}$ TAUD $=1020 \mathrm{~Hz},-30 \mathrm{dBV}$, Measured at BBO	-	-	-40	dB
	Gmsw69	SW6b $=$ SW7b $=$ SW8b $=$ SW9b $=$ SW9c $=$ off EV6, 7, 8, $9=0 \mathrm{~dB}, \mathrm{TBO}=1020 \mathrm{~Hz},-30 \mathrm{dBV}$ MDI $=1020 \mathrm{~Hz}-30 \mathrm{dBV}, \mathrm{EV} 4=0 \mathrm{~dB}$ RAUD, EAR, XEAR, JEAR, Measured at TONE	-	-	-40	dB
	Gmsw13	SW13 = SW2 = off, EV1, $2=0 \mathrm{~dB}$, $\mathrm{Din}_{\mathrm{I}}=1020 \mathrm{~Hz}, 0 \mathrm{dBm0}$, Measured at PTBO	-	-	-40	dB
	Gmsw15a	$\begin{aligned} & \text { SW15 }=\text { AMP4, TBI-TBO }=\text { short } \\ & \text { SGO }=1020 \mathrm{~Hz},-30 \mathrm{dBV} \text {, Measured at JEAR } \end{aligned}$	-	-	-40	dB
	Gmsw15b	$\begin{aligned} & \text { SW15 = AMP5, SGI-SGO = short } \\ & \text { TBO = } 1020 \mathrm{~Hz},-30 \mathrm{dBV} \text {, Measured at JEAR } \end{aligned}$	-	-	-40	dB
Electronic volume offset variation (amount of change for 1 step)	VEVOoff (EV0)	```SW3 = on, SW4 = SW5 = off MIC-MICO, SGC-XMIC = short Measured between SGC and BBO when EVo variable```	-10	-	10	mV
	VEV1off (EV1)	$\begin{aligned} & \text { SW2 }=\text { off, SW13 }=\text { on, EV2 }=0 \mathrm{~dB} \\ & \text { SYNC }=8 \mathrm{kHz}, \mathrm{CLK}=2048 \mathrm{kHz}, \text { DIN }=\mathrm{ICN} \\ & \text { Measured between SGC and PTBO when EV1 } \\ & \text { variable } \end{aligned}$	-25	-	25	mV
	VEV2off (EV2)	$\begin{aligned} & \text { SW2 }=\text { off, SW13 }=\text { on, EV1 }=0 \mathrm{~dB} \\ & \text { SYNC }=8 \mathrm{kHz}, \mathrm{CLK}=2048 \mathrm{kHz}, \mathrm{Din}=\mathrm{ICN} \\ & \text { Measured between SGC and PTBO when EV2 } \\ & \text { variable } \end{aligned}$	-25	-	25	mV
	VEV3off (EV3)	Tone generation = off, SW9a, 9b = off, SW9c $=$ on, EV4 $=-15 \mathrm{~dB}, \mathrm{EV} 9=0 \mathrm{~dB}$, $\mathrm{MDI}=$ open Measured between SGC and TONE when EV3 variable	-70	-	70	mV
Electronic volume offset variation (amount of change for 1 step)	VEV4off (EV4)	Tone generation = off, MDI = open, $\mathrm{EV} 3=15 \mathrm{~dB}, \mathrm{EV} 9=0 \mathrm{~dB}, \mathrm{SW} 9 \mathrm{a}=9 \mathrm{~b}=\mathrm{off}$, SW9c = on Measured between SGC and TONE when EV4 variable	-300	-	300	mV
	VEV5off (EV5)	Tone generation = off, MDI = open, $E V 3=15 \mathrm{~dB}, \mathrm{EV} 2=0 \mathrm{~dB}$ EV4 $=-15 \mathrm{~dB}, \mathrm{SW} 2=\mathrm{on}, \mathrm{SW} 13=$ off Measured between SGC and PTBO when EV5 variable	-5	-	5	mV

(Continued)

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Electronic volume offset variation (amount of change for 1 step)	VEV6off (EV6)	SW6b = on, SW6a = off TBI-TBO = short Measured between SGC and EAR when EV6 variable	-5	-	5	mV
	VEV7off (EV7)	SW7b = on, SW7a = off, SW15 = AMP4 TBI-TBO = short Measured between SGC and JEAR when EV7 variable	-5	-	5	mV
	VEV8off (EV8)	SW9b = on, SW9a, 9c = off TBI-TBO = short Measured between SGC and TONE when EV8 variable	-50	-	50	mV
	VEV9off (EV9)	$\begin{aligned} & \text { Tone generation = off, MDI = open, } \\ & \text { EV3 }=15 \mathrm{~dB} \\ & \text { EV4 }=-15 \mathrm{~dB}, \text { SW9c }=\text { on, SW9a, } 9 \mathrm{~b}=\text { off } \\ & \text { Measured between SGC and TONE } \end{aligned}$	-140	-	140	mV
Change in DC offset during mute	VSW2off (SW2)	$\begin{aligned} & \text { SW13 = off, EV2 }=0 \mathrm{~dB}, \mathrm{EV} 3=15 \mathrm{~dB} \\ & \text { EV4 }=-15 \mathrm{~dB} \\ & \text { EV5 }=-14 \mathrm{~dB}, \text { Tone }=\text { off, MDI }=\text { open } \\ & \text { Measured at PTBO for SW2 on and off } \end{aligned}$	-30	-	30	mV
	VSW3off (SW3)	$\begin{aligned} & \text { SW1, 4, } 5=\text { off, EV0 }=0 \mathrm{~dB} \\ & \text { MIC-MICO = short } \\ & \text { Measured at BBO for SW3 on and off } \end{aligned}$	-20	-	20	mV
	VSW4off (SW4)	SW1, 3, 5 = off, EV0 $=0 \mathrm{~dB}$ JMIC-JMICO = short Measured at BBO for SW4 on and off	-20	-	20	mV
	VSW5off (SW5)	$\begin{aligned} & \text { SW1, 3, 4, 10, } 11=\text { off, EV0 }=0 \mathrm{~dB} \\ & \text { TAUD = SGC } \\ & \text { Measured at BBO for SW5 on and off } \end{aligned}$	-10	-	10	mV
	VSW6off (SW6b)	SW7a, 8a, 9a = off, EV6 $=-8 \mathrm{~dB}$ TBI-TBO $=$ short, EV7 $=-3 \mathrm{~dB}$ Measured at EAR, XEAR for SW6b on and off	-10	-	10	mV
	VSW7off (SW7b)	SW6a, 8a, 9a = off, SW15 = AMP4 EV7 $=-3 \mathrm{~dB}$, TBI-TBO $=$ short Measured at JEAR for SW7b on and off	-10	-	10	mV
	VSW8off (SW8b)	SW6a, 7a, 9a = off TBI-TBO = short Measured at RAUD for SW8b on and off	-20	-	20	mV
	VSW9boff (SW9b)	SW6a, 7a, 8a, 9c = off, EV8 = 10 dB MDI = open, TBI-TBO = short Measured at TONE for SW9b on and off	-65	-	65	mV
	VSW9off (SW9c)	$\begin{aligned} & \text { SW6a, 7a, 8a, 9b }=\text { off, EV9 }=6 \mathrm{~dB} \\ & \text { MDI }=\text { open, TBI-TBO }=\text { short } \\ & \text { Measured at TONE for SW9c on and off } \end{aligned}$	-300	-	300	mV
	VSWDoff (SW13)	$\begin{aligned} & \text { SW2 = off, EV1, } 2=0 \mathrm{~dB}, \text { Din }=\text { ICN } \\ & \text { SYNC }=8 \mathrm{kHz}, \mathrm{CLK}=2048 \mathrm{kHz} \\ & \text { Measured at PTBO for SW13 on and off } \end{aligned}$	-90	-	90	mV

MB86437

(5) Codec

Parameter	Symbol	Conditions		Value			Unit
				Min.	Typ.	Max.	
Gain tracking (A to D) BTPO \rightarrow DOUT	GTX	$1020 \mathrm{~Hz},-10 \mathrm{dBm0}$ Reference value (μ-law)	+3 to $-40 \mathrm{dBm0}$	-0.3	-	0.3	dB
			-40 to $-50 \mathrm{dBm0}$	-0.5	-	0.5	dB
			-50 to $-55 \mathrm{dBm0}$	-1.0	-	1.0	dB
Gain tracking (D to A) DIN \rightarrow PTBO	GTR	$1020 \mathrm{~Hz},-10 \mathrm{dBm0}$ Reference value (μ-law) $E V 1=E V 2=0 \mathrm{~dB}$	+3 to -40 dBm0	-0.3	-	0.3	dB
			-40 to $-50 \mathrm{dBm0}$	-0.5	-	0.5	dB
			-50 to -55 dBm0	-1.0	-	1.0	dB
Gain tracking (A to D) (Linear) BTPO \rightarrow DOUT	GTXL	1020 Hz, AFST-13 dB Reference value	AFST to AFST-43 dB	-0.3	-	0.3	dB
			AFST-43 to AFST-53 dB	-0.5	-	0.5	dB
			AFST-53 to AFST-58 dB	-1.0	-	1.0	dB
Gain tracking (D to A) (Linear) DIN \rightarrow PTBO	GTRL	1020 Hz, AFSR-13 dB Reference value $\mathrm{EV} 1=\mathrm{EV} 2=0 \mathrm{~dB}$	AFSR to AFSR-43 dB	-0.3	-	0.3	dB
			AFSR-43 to AFSR-53 dB	-0.5	-	0.5	dB
			AFSR-53 to AFSR-58 dB	-1.0	-	1.0	dB
Transmitting frequency characteristics (A to D) BTPO \rightarrow DOUT	FRX	$\begin{aligned} & 0 \mathrm{dBm0} \\ & 1020 \mathrm{~Hz} \\ & \text { Reference value } \end{aligned}$	0 to 60 Hz	24.0	-	-	dB
			60 to 300 Hz	-0.20	-	-	dB
			300 to 3000 Hz	-0.20	-	0.20	dB
			3000 to 3400 Hz	-0.20	-	0.8	dB
			3400 to 4600 Hz	*	-	-	dB
			4600 to 12 kHz	32.0	-	-	dB
Receiving frequency characteristics (D to A) DIN \rightarrow PTBO	FRR	$\begin{aligned} & 0 \mathrm{dBmO} \\ & 1020 \mathrm{~Hz} \end{aligned}$ Reference value $\mathrm{EV} 1=\mathrm{EV} 2=0 \mathrm{~dB}$	0 to 300 Hz	-0.30	-	-	dB
			300 to 3000 Hz	-0.30	-	0.30	dB
			3000 to 3400 Hz	-0.30	-	1.10	dB
			3400 to 4600 Hz	*	-	-	dB
			4600 to 12 kHz	32.0	-	-	dB
Transmitting absolute gain (A to D) BTPO \rightarrow DOUT	GAX	$1020 \mathrm{~Hz}, 0 \mathrm{dBm0}$ (Linear: AFST-3 dB) $\mathrm{V}_{\mathrm{s}}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$		-1.0	0	1.0	dB
Receiving absolute gain (D to A) DIN \rightarrow PTBO	GAR	$1020 \mathrm{~Hz}, 0 \mathrm{dBm0}$ (Linear: AFSR-3 dB) $\mathrm{EV} 1=\mathrm{EV} 2=0 \mathrm{~dB}, \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$		-1.20	0	1.20	dB

*: $14.5 \times\left\{1-\operatorname{Sin} \frac{\pi(4000-f)}{1200}\right\}$
(Continued)
(Continued)

Parameter	Symbol	Conditions		Value			Unit
				Min.	Typ.	Max.	
Transmitting signal to noise ratio (A to D) BTPO \rightarrow DOUT	SDX	$\begin{aligned} & 1020 \mathrm{~Hz} \\ & \mathrm{C} \text { message } \\ & (\mu \text {-law }) \end{aligned}$	0 to $-30 \mathrm{dBm0}$	34.0	-	-	dB
			-40 dBm0	28.0	-	-	dB
			-45 dBm0	23.0	-	-	dB
Receiving signal to noise ratio (D to A) DIN \rightarrow PTBO	SDR	$\begin{aligned} & 1020 \mathrm{~Hz} \\ & \text { C message } \\ & \text { EV1 = EV2 }=0 \mathrm{~dB} \\ & (\mu \text {-law }) \end{aligned}$	0 to $-30 \mathrm{dBm0}$	34.0	-	-	dB
			-40 dBm0	28.0	-	-	dB
			-45 dBm0	23.0	-	-	dB
Transmitting signal to noise ratio (A to D) BTPO \rightarrow DOUT (Linear)	SDXL	1020 Hz C message	AFST-3 to AFST-33 dB	34.0	-	-	dB
			AFST-43 dB	28.0	-	-	dB
			AFST-48 dB	23.0	-	-	dB
Recieving signal to noise ratio (D to A) SDRL DIN \rightarrow PTBO (Linear)	SDRL	1020 Hz C message $\mathrm{EV} 1=\mathrm{EV} 2=0 \mathrm{~dB}$	AFSR-3 to AFSR-33 dB	34.0	-	-	dB
			AFSR-43 dB	28.0	-	-	dB
			AFSR-48 dB	23.0	-	-	dB
Transmitting no-talk noise BTPO \rightarrow DOUT	ICNX	C message		-	-72	-69	dBm0C
Receiving no-talk noise DIN \rightarrow PTBO	ICNR	C message$\mathrm{EV} 1=\mathrm{EV} 2=0 \mathrm{~dB}$		-	-75	-70	dBm0C
Analog input level BTPO	AILU	$\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBm0}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}=3.0 \mathrm{~V} \quad \mu \text {-law } \end{aligned}$		0.3290	0.3739	0.4195	Vrms
Analog output level PTBO	AOLU	$\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBm} 0, \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}=3.0 \mathrm{~V} \quad \mu \text {-law } \quad \mathrm{EV} 1=\mathrm{EV} 2=0 \mathrm{~dB} \end{aligned}$		0.3290	0.3739	0.4195	Vrms
Analog input fullscale level BTPO	AFST	$\mathrm{V}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$ Linear		0.6729	0.7647	0.8581	Vop
Analog output fullscale level PTBO	AFSR	V s $=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$ Linear $E V 1=E V 2=0 d B$		0.6729	0.7647	0.8581	Vop

TEST CIRCUIT

Note: Insert a large bypass capacitor between VD and GND and between SGC and VS4.

ORDERING INFORMATION

Part number	Package	Remarks
MB86437PFV	48 pins, Plastic LQFP (FPT-48P-M05)	

PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9707

© FUJITSU LIMITED Printed in Japan

